
130 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles
doi:10.1145/1941487.1941516

What does vulnerability and patch data say?

by Guido Schryen

Is Open
Source
Security
a Myth?

the impact of open source on software
security remains controversial. Propo-
nents of OSS stress the strength of the
resulting review process19 and argue in
the sense of Raymond20 that, “Given
enough eyeballs, all bugs are shallow.”
while some opponents follow the argu-
ment of Levy,11 who remarks “Sure, the
source code is available. But is anyone
reading it?” Interestingly, Ozment and
Schechter18 report that in the Open-
BSD source, foundational vulnerabili-
ties have a median lifetime of at least
2.6 years, which seems to refute Ray-
mond’s argument.

While the security discussion is
rife with beliefs and guesses, only a
few quantitative models and some
empirical studies appear in the litera-
ture.1,9,10,13,17,21,24,25 Many of these em-
pirical studies investigate one package
or a few software packages only, and to
my best knowledge, no prior study has
been conducted to comprehensively
study differences between open source
and closed source security. The reason
why comprehensive empirical studies
have been neglected is probably due to
the need for laborious collection and
analysis of reliable data and the associ-
ated manual work.

This article presents a comprehen-
sive empirical investigation of pub-
lished vulnerabilities and patches of
17 widely deployed open source and
closed source software packages. The
empirical analysis uses comprehen-
sive vulnerability data contained in

During the past few decades we became accustomed
to acquiring software by procuring licenses for a
proprietary, or binary-only, immaterial object. We
regard software as a product we have to pay for, just as
we would pay for material objects. However, in more
recent years, this widely cultivated habit has begun to
be accompanied by a software model characterized by
software that comes with a compilable source code.
This type of software is referred to by the term “open
source software” (OSS).

While there is consensus that opening up source
code to the public increases the number of reviewers,

 key insights
 � �The security discussion of open source

and closed source software is rife
with beliefs and guesses. Data-driven
insights based on an empirical analysis,
as examined here, provide new insight
into such security issues.

 � �The analysis illustrates there is no
empirical evidence that the particular
type of software development is the
primary driver of security. Rather, the
particular policies of vendors determine
the patching behavior.

 � �It is most important to provide economic
incentives for software producers to
make software less vulnerable and to
provide patches. P

h
o

t
o

g
r

p
a

h
 b

y
 B

y
r

o
n

 M
a

y
n

e
 M

c
Cl

a

i
n

,
illus

t
r

a
t

i
o

n
 b

y
 C

a
r

mi

n
e

 L
ui

n

o

P
h

o
t

o
g

r
p

a
h

 b
y

 B
y

r
o

n
 M

a
y

n
e

 M
c

Cl

a
i

n
 a

n
d

.
illus

t
r

a
t

i
o

n
 b

y
 C

a
r

mi

n
e

 L
ui

n

o

may 2011 | vol. 54 | no. 5 | communications of the acm 131

132 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

the NIST National Vulnerability Da-
tabase14 and a newly compiled data
set of vulnerability patches. Based on
these comprehensive data sets, this
study is capable of providing empirical
evidence that open source and closed
source software development do not

significantly differ in terms of vulner-
ability disclosure and vendors’ patch-
ing behavior, a phenomenon that has
been widely assumed, but hardly in-
vestigated.

Open and Closed Source Software

Generally, the availability of source
code to the public is a precondition
for software being denoted as “open
source software.” Beyond this require-
ment, the Open Source Initiative (OSI)
has defined a set of compliance criteria
for open source software.15 The (open
source) definition (OSD) includes per-
mission to modify the code and to re-
distribute it. However, it does not gov-
ern the software development process
in terms of who is eligible to generate
and to modify software. In this regard,
two options are distinguished by Ray-
mond:20 When what is called “bazaar
style” is in place, any volunteer can
provide source code submissions. In a
more closed environment, software is
crafted by individual wizards, and the
development process is characterized
by a relatively strong control of design
and implementation. This style is re-
ferred to as “cathedral style.”

The OSI approved several licenses,
including the Apache License, the BSD
license, and the GNU General Public Li-
cense (GPL), which is maintained by the
Free Software Foundation (FSF). The
FSF provides a definition of “‘free soft-
ware’ [as] a matter of liberty, not price.”8
In contrast to the OSD definition, the
FSF definition explicitly focuses on the
option of releasing the improvements
to the public. Software is usually regard-
ed as “closed” if the source code is not
available to the public.

The categorization of software and
its development process as “open
source software (development)” or “free
software (development)” in contrast to
“closed source software (development)”
mirrors the perspective of developers
and specifies the type of development.
Complementarily, one could also adopt
the software users’ point of view by
distinguishing between software that
is charged for and software that is free
of charge. The resulting classification
scheme is shown in Table 1.

The Life Cycle of Vulnerabilities
and Patches
When software is executed in a way
which is different from that which the
original software designers intended,
this misbehavior is rooted in software
bugs. Anderson3 assumes the ratio
between software bugs and software
lines of code (SLOC) to be about 1:35.
When bugs can be directly used by at-

Table 1. Classification of software.

Users’
perspective Open Source (license) Closed Source

Free of charge Linux, Apache web server Adobe Acrobat Reader

Subject to charge MySQL (dual licensing1) Microsoft Windows
operating systems

1	� “[D]istributors that…do not wish to distribute the source code for the commercially licensed software
under version 2 of the GNU General Public License (the “GPL”) must enter into a commercial license
agreement with Sun.“ (http://www.mysql.com/about/legal/licensing/oem/)

Developers’
perspective

Figure 1. Vulnerability life cycle.

/injection discovered/

to be published/
publishing

to be patched/
patching

not to be
patched/

not to be
patched/

to be patched/
patching

not to be
published/

(new) vuln. discovered/

software
released

Vuln.
discovered

Vuln.
published

Vuln.
unpatched

Vuln.
unpublished

do/vuln. search

Vuln.
patched

do/vuln. search

Figure 2. Classification of software bugs and vulnerabilities.

bug

vulnerability

detected undetected

unpublishedpublished

patched unpatched
by black hat

by white hat

non-security related

  investigated area in this work

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 133

tackers to gain access to a system or
network, they are termed “vulnerabili-
ties” by the U.S. MITRE Corporation.12
Although there are other definitions
of “vulnerabilities,”16,23 the adoption
of the MITRE definition is useful in a
pragmatic sense for three reasons:

˲˲ Most empirical studies implicitly
use this definition by analyzing “Com-
mon Vulnerability and Exposures
(CVE)” entries, which are provided by
MITRE. CVE identifiers are not only
widely used by researchers, they are also
used by information security product/
service vendors. Thereby, the CVE defi-
nition has become a de facto standard.

˲˲ The process of accepting a po-
tential software bug as a CVE vulner-
ability is well documented, and the
assessment is conducted by security
experts.12

˲˲ The U.S. National Institute of Stan-
dards and Technology (NIST) adopts
the MITRE understanding of vulner-
abilities in its National Vulnerability
Database (NVD), which is probably the
largest database of security-critical
software bugs and which provides
comprehensive CVE vulnerability data
feeds for automated processing.

Vulnerabilities and their dynamic
behavior can be described through
the “vulnerability life cycle,” which is
shown in Figure 1 as a UML statechart
diagram. The diagram provides a pro-
cess-oriented perspective on a single
vulnerability and its patch (for the
consideration of exploits see the study
of Frei9), integrates states that have
been introduced by Arbaugh et al.,5
and uses a cycle to account for the fact
that patching vulnerabilities can even
create new vulnerabilities.5

Injection: The life cycle starts with
the injection of a vulnerability into
the software. In principle, a vulner-
ability can find its way into software
through the intentional behavior of
software developers, who strive to sell
or exploit vulnerabilities, or to harm
their employer, or unintentional be-
havior, which can be rooted in careless
programming or in using “insecure”
development tools. After testing, the
software is finally released, the public
starts searching for vulnerabilities,
and the software vendor potentially
continues searching.

Discovery and publication: The dis-
covery of vulnerabilities can be based

on coincidental detection or on the
active search of persons with intrinsic
or with extrinsic motivation. The emer-
gence of vulnerability markets,22 in-
cluding bug auctions, bug challenges,
and vulnerability brokers,7 provides
economic incentives (at least for “white
hats”) to search for and to disclose in-
formation on vulnerabilities.

When a vulnerability is discovered,
the question of whether it should be
published or not occurs. If a “black
hat” detects the vulnerability, his or
her decision depends on whether s/he
aims at making the vulnerability avail-
able to as many other “black hats” as
possible and to gain reputation, or to
a closed group of potential attackers. If
the vulnerability is detected by a “white
hat,” including the software vendor,
it is still not clear whether the vulner-
ability should be published or not, as
vulnerability information is useful for
both the “good guys,” who can provide
patches, and the “bad guys,” who prob-
ably would not have gained knowledge
of the vulnerability otherwise. Some
researchers have addressed this ques-
tion: Rescorla21 argues against dis-
closure, as he finds the probability of
vulnerability rediscovery to be vanish-

ingly small. However, investigating the
operating system OpenBSD, Ozment17
finds that vulnerabilities are correlated
regarding their rediscovery, and argues
in favor of disclosure.

Patching: Once a vulnerability is
published, at first glance it seems ob-
vious that the vendor should provide
a patch as soon as possible. But it can
be economically reasonable for the
vendor not to provide a patch when it
is the customers who suffer the most
cost of failure and when competitors
behave likewise. If the vulnerability is
not published (and detected by “white
hats” other than the vendor), again,
the question arises of whether the
vendor should provide a patch or not.
While the aforementioned economic
argument still holds, the decision not
to provide a patch may be rooted in the
assumptions that a nonpublished vul-
nerability is hardly exposed to attacks;
any vulnerability disclosure reduces
the vendor’s reputation; and the patch
reveals the vulnerability to attackers,
who then try to compile exploits and to
use them to attack unpatched systems.

When a vulnerability patch is avail-
able, the search for newly injected
vulnerabilities starts since it is known

Figure 3. Selected open source and closed source software packages.

Server

Client

Closed source software Open source software

Web server

Internet

Information

Services

Apache

Web browser

Internet

Explorer

Mozilla

Firefox

Office software

MS Office OpenOffice

Email Client

Outlook

Express

Thunderbird

DBMS

Oracle DB2 mySQL PostgreSQL

Operating System

Windows 2000 Windows XP MAC OSX Red Hat Linux Debian Linux

Network

134 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

that patches can contain new vulnera-
bilities.6 As the injection refers to a new
vulnerability, Figure 1 shows a dashed
line. An overview of the classification of
vulnerabilities is provided in Figure 2.

The previous discussion of the life
cycle stresses that the empirical securi-
ty of software goes beyond technologi-
cal phenomena and also depends on
economic conditions. In the particu-
lar context of open source and closed
source software, Anderson2 shows that
although, under ideal conditions, open
and closed systems are equally secure,
this symmetry can be broken owing to
economic phenomena.

Investigated Software Packages
In order to draw a picture of empiri-
cal open source and closed source

software security, it seems alluring to
consider as many software packages
and vulnerability data as possible. But
this (quantitative) approach suffers
from at least two limitations. First, for
many software packages only (too) few
vulnerability data is available, as the
packages are rarely deployed and prob-
ably hardly attractive for attackers. Sec-
ond, a comparison of open source and
closed source software remains strong-
ly biased, unless the software packages
under consideration are comparable
in terms of functionality. However, for
many open source and closed source
software packages, no functional coun-
terparts are available.

Due to these issues, I decided to
follow a qualitative approach, and to
manually select widely deployed soft-

ware packages for the empirical analy-
sis. Assuming that most software is
usually attacked through the Internet,
I adopt the client-server perspective to
frame the selection of software pack-
ages (see Figure 3). On the client side,
the most widely deployed operating
systems (OS) are Microsoft OS, MAC OS
X and Linux derivatives (http://market-
share.hitslink.com). Among the Mi-
crosoft OS, Windows 2000, Windows
XP, and Windows Vista are the leading
ones in terms of market share, but I
excluded the latter due to its short his-
tory (release date: January 30, 2007).
Regarding Linux, I selected Red Hat
Linux and Debian Linux, which are
widely deployed Linux distributions.
In addition to operating systems, I an-
alyze web browsers, email clients, and
office software. Regarding web brows-
ers, Internet Explorer and Firefox are
the most widely used programs (http://
marketshare.hitslink.com), regard-
ing email clients and office software, I
found no reliable statistics. I selected
Outlook Express and Thunderbird,
which are comparable in terms of
functionality in contrast to Outlook,
which integrates much more function-
ality, and MS Office (Word, Excel, and
Powerpoint) and OpenOffice.

On the server side, I analyze Web
servers and (relational) database man-
agement systems (DBMS), which are
widely used application types. Internet
Information Services and Apache are
the most frequently used Web servers
(http://news.netcraft.com/archives/
web_server_survey.html). Oracle and
DB2 are two of the mostly used closed
source DBMS (http://www.gartner.com/
it/page.jsp?id=507466), while for open
source DBMS no reliable data could bve
found. Having explored database-relat-
ed Web sites, I decided to use mySQL
and PostgreSQL, which are widely de-
ployed. The specific versions of the soft-
ware packages are given in Table 2.

Vulnerabilities
Having decided to adopt the vulner-
ability definition of the MITRE CVE
group (discussion earlier), the ques-
tion remains of how to gather CVE data
as the CVE group “…only contains the
standard identifier number with status
indicator, a brief description, and ref-
erences to related vulnerability reports
and advisories” (http://cve.mitre.org/

Table 2. Vulnerability data.

Application
Type Product Devel. Type Release date #vuln

MTBVD
[days]

Development of
vulnerability

disclosure over time

Browser Internet
Explorer 7

Closed 2006-10-18 74 13.29 Linear

Firefox 2 Open (BS) 2006-10-24 167 5.16 Linear

Email client MS
Outlook
Express 6

Closed 2001-10-25 23 120.73 Linear

Thunder-
bird 1

Open (CS) 2004-12-07 110 13.79 Not linear

Web server IIS 5 Closed 2000-02-17 83 40.90 Not linear

Apache2 Open (CS) 2000-03-10 80 40.63 Linear

Office MS Office
2003

Closed 2003-11-17 99 19.22 Not linear

OpenOf-
fice2

Open (CS) 2005-10-20 19 63.16 Linear

Operating
system

Windows
2000

Closed 2000-02-17 385 9.35 Linear

Windows
XP

Closed 2001-10-25 297 8.97 Linear

Mac OS X
10.x

Closed2 2005-04-29 300 4.64 Linear

Red Hat
Enterprise
Linux 4

Open (CS) 2005-02-14 2641 5.48 Not linear

Debian 3.1 Open (BS) 2005-06-06 2071 6.45 Linear

Database
Management
System

mySQL 5 Open (BS) 2005-10-24 33 46.00 Linear

Post-
greSQL 8

Open (CS) 2005-01-19 25 58.96 Linear

Oracle 10g Closed 2004-01-15 63 29.72 Not linear

DB2 v8 Closed 2004-03-26 13 136.38 Linear

BS: Bazaar style CS: Cathedral style
1	� The NVD lists linux kernel vulnerabilities separately from vulnerabilities of specific Linux distributions.

Red Hat Enterprise Linux (RHEL) 4 uses kernel 2.6.9, (http://www.linuxcompatible.org/Red_Hat_En-
terprise_Linux_4_Nahant_Beta_2_Public_Availability_s36797.html), Debian 3.1 uses kernels 2.4.27 or
2.6.8 (http://www.debian.org/News/2005/20050606). I consider only those kernel vulnerabilities that
were published after the release date of RHEL 4 and Debian 3.1, respectively.

2	� Some open source components are included.

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 135

about/faqs.html). I decided to use the
NIST National Vulnerability Database
(NVD) (http://nvd.nist.gov/)14, which
provides full database functionality
for the complete MITRE CVE diction-
ary. Information on MITRE CVE vul-
nerabilities and the NIST NVD is pro-
vided on the Web sites of MITRE12 and
NIST,14 respectively.

Vulnerability data. I discuss the
quality of used data and the implica-
tions of how the MITRE CVE diction-
ary and the NIST NVD are built for the
analysis of vulnerabilities. As the data
sources of the CVE group are manifold
and include trustworthy organizations,
such as US-CERT and SecurityFocus,
the CVE input can be assumed to be
comprehensive, although it cannot be
guaranteed that all disclosed vulner-
abilities are considered. The analysis
of potential vulnerabilities by the MI-
TRE CVE group assures that each CVE
candidate has been inspected by secu-
rity professionals. In cases where soft-
ware vendors dispute vulnerabilities,
I chose to use MITRE data in favor of
an unbiased assessment. Overall, the
CVE dictionary is a valuable resource
for vulnerability analysis in terms of
both quantity and quality. As the NVD
acquisition procedure considers all
CVE vulnerabilities in a timely manner
and provides them in xml data feeds,
the NVD is an appropriate database for
the analysis of vulnerabilities in gen-
eral. However, while the NVD provides
a comprehensive database of (CVE)
vulnerabilities, the properties of some
vulnerability attributes added by NVD
analysts need some more attention:

˲˲ Original release date (ORD): Owing
to two potential time gaps, the ORD as-
signed to a CVE identifier by the NVD
does not necessarily mirror the actual
date of disclosure: Time between the
actual disclosure of a vulnerability and
its consideration in the “Assigned”
phase of the MITRE CVE workflow.
This gap is zero when the vulnerabil-
ity has not been disclosed to the pub-
lic. Moreover, time between the “As-
signed” date and the NVD publication
date. As no information on the overall
time gaps is available, the computation
of patch times and exploit times would
contain errors of unknown size. How-
ever, I assume the effect of the errors
on the particular types of development
of vulnerability disclosure over time

(for example, linear or S-shape) to be
less important, as this development is
not affected by the full time gaps, but
only by differences between the time
gaps (standard deviation of time gaps).
In addition, unusually large time gaps
would be detectable in the graphics
shown in Figure 4.

˲˲ Common Weakness Enumeration
(CWE): The NVD analysis team assigns
a type (for example, buffer overflow)
to a vulnerability, based on a subset of
the MITRE CWE structure. However,
by Dec. 31, 2008, only about one fourth
of all NVD CVE entries (9,748 out of
34,091) contained a CWE name so that
an analysis of vulnerability types is not
reasonable.

˲˲ Common Platform Enumeration
(CPE): The NVD applies the structured
naming scheme CPE, provided by MI-
TRE, to assign names of vulnerable
product versions to CVE identifiers.

˲˲ Common Vulnerability Scoring
System (CVSS): Vulnerabilities are
scored by the NVD analysis team re-
garding their severity. CVSS 2.0 pro-
vides for three scores, with each score
value being between 0 and 10 (highest
severity). The base score is an aggre-
gation of six base score metrics. This
score is mandatory, and specified by
vulnerability bulletin analysts and soft-
ware vendors. The NVD team works
closely with the CVSS working group,
MITRE, public vulnerability sites, ven-
dors and security researchers to come
to a consensus on scoring some of the
more commonly occurring vulnerabili-
ties. Other score types are the temporal
score and the environmental score. For
our analysis, only the base score is ap-
plicable. It should be noted that the
NVD scoring system changed over time:
CVSS 2.0 scores for the CVE vulnerabil-
ities published prior to 9/11/2005 were
converted by the NVD team from prior
CVSS metric data. The investigation of
the NVD conversion script provided by
the NVD Program Manager (C. John-
son) reveals that for all CVSS 2 charac-
teristics corresponding CVSS 1 charac-
teristics are available, and a “natural”
conversion was conducted. To sum up,
older scores that have been converted
into CVSS 2 are comparable with “new”
CVSS 2 scores. Based on the afore-
mentioned analysis, I regard CVSS 2.0
scores to be useful for further analysis.

The following analysis of NVD vul-

nerabilities is based on NVD xml data
feeds as available on Jan. 31, 2009. All
feeds were imported into MS Office
Excel 2007 and processed using fil-
ters and MS Query. In order to assure
that vulnerabilities listed in the NVD
data feeds have not been accidentally
misattributed regarding the affected
software version, I double-checked the
affected software versions of each vul-
nerability on the Web sites of vendors,
MITRE, and SecurityFocus. In very few
cases of inconsistencies, I excluded the
particular vulnerability from any fur-
ther analysis.

Mean time between vulnerability
disclosures. Table 2 lists for each soft-
ware package the number of published
vulnerabilities and the “mean time
between vulnerability disclosures”
(MTBVD) defined—analogously to
the software engineering term “mean
time between failures”—as the average
number of days since software release
divided by the number of published
vulnerabilities. With regard to deter-
mining the MTBVD, I consider only
those vulnerabilities that have been
published after the release date. Vul-
nerabilities that have been published
earlier than the release date and that
also affect the version under consid-
eration are due to the development
process of earlier versions. A simple
comparison of the MTBVD of software
packages does presumably not provide
reliable results regarding the level of
security because of two reasons: the se-
verity of vulnerabilities should be con-
sidered, for example by using vulner-
ability weights, and the vulnerability
detection and publication are probably
correlated with market and software
factors. For example, an important
market factor is the attractiveness of
the software for “vulnerability search-
ers,” an important software factor is
software size, as given by “software
lines of code” (SLOC). However, reli-
able and precise figures are available
for few software packages only, so that
figures must not be used for a fair com-
parison of security levels. On the other
hand, MTBVD data is not useless as it
provides an impression of how often
vulnerabilities are published and how
insecure especially operating systems
are, regardless of the particular devel-
opment style. Overall, data suggests
the vulnerability publication rate is

136 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

probably determined by other factors
than the software development style.

Development of vulnerability disclo-
sure over time. While the previous dis-
cussion provides a static picture of the
history of vulnerabilities, I now address
the development of vulnerabilities over
time. In an earlier empirical investiga-

tion, Alhazmi et al.1 assume the devel-
opment of vulnerability discovery can
be described by an “S” shape. However,
the analysis of vulnerability data shows
that for 12 of 17 considered software
packages a linear correlation between
time and the number of published vul-
nerabilities is found (see Table 2 and

Figure 4). This supports Rescorla’s ar-
gument that the rate of vulnerability
finding is constant over long periods
of time. The reason why five packages
show a different behavior is not clear.
Interestingly, three closed source pack-
ages (MS Office, Oracle, and DB2) and
one open source package (Apache)
show no vulnerability disclosure during
the first 316, 202, 460, and 367 days, re-
spectively, while for all other packages
vulnerabilities were published quickly
after their release. The available vulner-
ability data explains these large time
gaps only partially:

˲˲ In contrast to the other three pack-
ages, Apache 2 was a substantial re-
write of much of the Apache 1.x code.
As knowledge of vulnerabilities of
Apache 1.x was of very limited use for
finding vulnerabilities in Apache 2, the
discovery of the first vulnerabilities
could be expected to take a while, but it
seems questionable as to whether this
explains a one-year gap. Data on pub-
lished vulnerabilities does not tell us
whether the quality of code prevented
vulnerabilities from being detected
quickly or whether discovered vulnera-
bilities were published later or are even
still unpublished.

˲˲ In the case of DB2, the software
showed only 13 vulnerabilities, so that
a large time gap is less surprising.

˲˲ Regarding Oracle, the NVD pub-
lished the first (ten) vulnerabilities
altogether on Aug. 4, 2004. It seems
reasonable to assume that these pub-
lished vulnerabilities had been de-
tected much earlier and that their pub-
lication was delayed either by Oracle,
MITRE, or NIST NVD.

˲˲ The case of Office 2003 showed
none of the aforementioned reasons.
Vulnerability data does not reveal why
the first vulnerabilities were published
so late.

Despite the aforementioned minor
issues in analyzing vulnerability data,
overall there is no observable differ-
ence between open source and closed
source software with regard to the (type
of) development of vulnerabilities over
time, and there is also no observable
difference between open source soft-
ware developed in bazaar style and
open source software developed in ca-
thedral style.

Severity of published vulnerabili-
ties. Having considered the number of

Figure 4. Development of vulnerability disclosure over time.

180

160

140

120

100

80

60

40

20

0

0 100 200 300 400 500 600 700 800 900

Time (days)

Vulnerabilities of Browsers

IE7 Firefox 2

Vulnerabilities of Email Clients

Vulnerabilities of Web Servers

OE6 Thunderbird 1

IIS 5 Apache 2

V
u

ln
er

ab
il

it
ie

s

120

100

80

60

40

20

0

0 300 600 900 1200 1500 1800 2100 2400 2700

Time (days)

V
u

ln
er

ab
il

it
ie

s

100

80

60

40

20

0

0 500 1900 1500 2000 2500 3000

Time (days)

V
u

ln
er

ab
il

it
ie

s

180

160

140

120

100

80

60

40

20

0

0 100 200 300 400 500 600 700 800 900

Time (days)

Vulnerabilities of Browsers

IE7 Firefox 2

Vulnerabilities of Email Clients

Vulnerabilities of Web Servers

OE6 Thunderbird 1

IIS 5 Apache 2

V
u

ln
er

ab
il

it
ie

s

120

100

80

60

40

20

0

0 300 600 900 1200 1500 1800 2100 2400 2700

Time (days)

V
u

ln
er

ab
il

it
ie

s

100

80

60

40

20

0

0 500 1900 1500 2000 2500 3000

Time (days)

V
u

ln
er

ab
il

it
ie

s

180

160

140

120

100

80

60

40

20

0

0 100 200 300 400 500 600 700 800 900

Time (days)

Vulnerabilities of Browsers

IE7 Firefox 2

Vulnerabilities of Email Clients

Vulnerabilities of Web Servers

OE6 Thunderbird 1

IIS 5 Apache 2

V
u

ln
er

ab
il

it
ie

s

120

100

80

60

40

20

0

0 300 600 900 1200 1500 1800 2100 2400 2700

Time (days)

V
u

ln
er

ab
il

it
ie

s

100

80

60

40

20

0

0 500 1900 1500 2000 2500 3000

Time (days)

V
u

ln
er

ab
il

it
ie

s

(continued on next page)

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 137

vulnerabilities, I now analyze whether
open source and closed source soft-
ware differ in the severity of published
vulnerabilities. This perspective is im-
portant as well, because a single highly
severe vulnerability that enables at-
tackers to get root access to a system
is probably more crucial than 10 low
severe vulnerabilities that grant only
reading access to unauthorized users.
I analyze the severity of vulnerabilities
for each software package in terms
of the median and the proportion of
highly severe vulnerabilities. Mean,
standard deviation and, for each ap-
plication type, the median of medians
is also given (see Table 3). The analysis
provides the following results:

˲˲ The medians of medians reveal
that the vulnerabilities of office prod-
ucts are much more severe (8.45) than
those of Web servers (5.0), while the
values of the other application types
are close to each other. However, a sta-
tistical analysis of the medians is not
reasonable here due to the low number
of values.”

˲˲ When we determine the medians
of medians of open source software
(5.7) and closed source software (6.8)
and also the corresponding medians
of the proportions of highly severe
vulnerabilities (30.28% and 45.95%, re-
spectively), the first impression is that
open source software is more secure
in terms of the severity level. However,
applying statistical analysis (Mann-
Whitney U-test) on the medians,a no
statistically significant differences can
be found: the two-tailed test provides
a high number for p (p=0.11). Applying
the same test to the proportion figures,
the test, again, does not indicate that
the samples are significantly different
at the 0.05 level (p=0.06).b

a	 Although the severity of a vulnerability is given
by a number, this number is at ordinal scale
level only (due to the characteristics of the
CVSS evaluation process). Consequently, vari-
ances of the samples cannot be determined.

b	 In contrast to severities of vulnerabilities, pro-
portions of highly severe vulnerabilities are at
cardinal level. As the equality of the sample
variances cannot be rejected at the 0.05 level
(Fsample = 1.62 < 3.5 =F(7,8), the assumption that
samples are normally distributed cannot be re-
jected at the 0.05 level (Kolmogorov-Smirnow
test), we assume that variances are approxi-
mately equal so that the Mann-Whitney U-test
can be applied.

ware communities in terms of creating,
detecting, and publishing vulnerabili-
ties, the investigation of the provision
of patches aims at identifying how
vendors behave in actively addressing
and finally removing vulnerability is-

Vendors’ Patching Behavior
Patch data. While the analysis of vul-
nerabilities and their publication re-
fers to the first three phases of the
software vulnerability life cycle, and
thereby mirrors the behavior of soft-

Figure 4 (continued from previous page). Development of vulnerability disclosure over time.

100

80

60

40

20

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (days)

Vulnerabilities of Office Software

OpenOffice 2 MS Office 2003

Windows 2000 Windows XP Mac OS X 10.x Red Hat EL 4 Debian 3.1

mySQL 5 PostgreSQL 8 Oracle 10g DB2 v8

Vulnerabilities of Operating Systems

Vulnerabilities of DBMS

V
u

ln
er

ab
il

it
ie

s

400

300

200

100

0

0 400 800 1200 1600 2000 2400 2800 3200

Time (days)

V
u

ln
er

ab
il

it
ie

s

100

80

60

20

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (days)

V
u

ln
er

ab
il

it
ie

s

100

80

60

40

20

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (days)

Vulnerabilities of Office Software

OpenOffice 2 MS Office 2003

Windows 2000 Windows XP Mac OS X 10.x Red Hat EL 4 Debian 3.1

mySQL 5 PostgreSQL 8 Oracle 10g DB2 v8

Vulnerabilities of Operating Systems

Vulnerabilities of DBMS

V
u

ln
er

ab
il

it
ie

s

400

300

200

100

0

0 400 800 1200 1600 2000 2400 2800 3200

Time (days)

V
u

ln
er

ab
il

it
ie

s

100

80

60

20

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (days)

V
u

ln
er

ab
il

it
ie

s

100

80

60

40

20

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (days)

Vulnerabilities of Office Software

OpenOffice 2 MS Office 2003

Windows 2000 Windows XP Mac OS X 10.x Red Hat EL 4 Debian 3.1

mySQL 5 PostgreSQL 8 Oracle 10g DB2 v8

Vulnerabilities of Operating Systems

Vulnerabilities of DBMS

V
u

ln
er

ab
il

it
ie

s

400

300

200

100

0

0 400 800 1200 1600 2000 2400 2800 3200

Time (days)

V
u

ln
er

ab
il

it
ie

s

100

80

60

20

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (days)

V
u

ln
er

ab
il

it
ie

s

138 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

sues. In order to detect differences in
the patching behavior of open source
and closed source vendors, I analyze
how many of the vulnerabilities re-
mained unpatched and whether any
correlation between the patch status
and the severity of vulnerabilities ex-
ists. Although vendor sites provide
patch dates, I do not analyze the time
gap between vulnerability disclosure
and vendors’ provision of patches, as
the vulnerability publication dates
contained in the NVD do not necessar-
ily give the actual publication date (dis-
cussion earlier). In contrast to vulnera-
bility publication data, reliable data on
patches can be (manually) collected by
directly looking up vendors’ sites and
vendor-neutral Web sites. More specifi-
cally, I used the following data sources
to obtain reliable patch data: NVD, MI-
TRE site, US-CERT Vulnerability Notes
Database, SecurityFocus, Microsoft Se-
curity Bulletins, OpenOffice.org, The
Open Source Vulnerability Database,
The X-Force database (IBM), Mozilla
Foundation Security Advisories, Red
Hat Network, Apache Security Reports,
Apple Mailing Lists, IBM FixPaks, VU-
PEN Security, mySQL Forge, and Oracle
Security Alerts and Patch Updates.

The newly compiled data pool con-
tains patch data on the aforemen-
tioned browsers, email clients, Web
servers, office products, operating
systems, and database management
systems. In cases where vulnerabilities
have not been patched by those ven-
dors regarded as “responsible” by NIST
(NVD), I manually checked the MITRE
description of these vulnerabilities. On
the basis of this inspection I decided
whether it’s the responsibility of a par-
ticular vendor to provide a patch or not.
In the few cases where I regarded the
assigned vendor as not being responsi-
ble, I did not count the vulnerability as
unpatched (by that particular vendor).

(Un)patched Vulnerabilities
Table 4 shows aggregated patch data
for each software package. Vulnerabili-
ties for which I could not find any patch
information by Feb. 28, 2009 are classi-
fied as unpatched. As I used NVD xml
data feeds as available on Jan. 31, 2009,
the analysis considers a time gap of four
weeks in order to account for delays in
vendors’ patching behavior, such as
those due to “patch release days.”

It is remarkable to see that 17.6%
(30.4%) of the published open (closed)

source software vulnerabilities (in
terms of the median) are still un-
patched. However, standard devia-
tions differ enormously (6.9% and
24.7%, respectively). Apparently, the
proportion of still unpatched vulner-
abilities largely depends on the spe-
cific vendor. I discuss this behavior in
detail below.

Interestingly, the case of Microsoft
also shows that even the same vendor
can display different patching behav-
ior, depending on the particular ap-
plication type: while only 4% of MS
Office 2003 vulnerabilities remain un-
patched, one out of three vulnerabili-
ties of both operating systems remain
unpatched, half of the vulnerabilities
of IIS are still open, and even two out
of three vulnerabilities of the Internet
clients remain unpatched. The case
of operating systems shows that the
proportion of unpatched vulnerabili-
ties of software cannot be explained by
simply considering the number of vul-
nerabilities, it rather depends on the
vendors’ patching priorities.

Severity of (un)Patched
Vulnerabilities
It is interesting to compare the severity
median of unpatched vulnerabilities
with the median of patched vulner-
abilities, in order to detect vendors’
patching priorities, and to detect dif-
ferences between open source and
closed source software. The data in Ta-
ble 4 reveals that, for all six Microsoft
products, there is a strong bias toward
patching severe vulnerabilities. This
result indicates that Microsoft decides
to leave less severe vulnerabilities un-
patched, probably because the eco-
nomic efforts would not be compen-
sated by the (minor) gain in software
security. However, on the other hand,
the result also shows that Microsoft
is interested in patching the most se-
vere vulnerabilities, which reveals that
software security is regarded to be a
serious market issue. Apple (MAC OS
X) shows a similar behavior in their op-
erating system in terms of the severi-
ties of patched and unpatched vulner-
abilities, but, in contrast to Microsoft,
Apple seems to be interested in patch-
ing most of the vulnerabilities. We find
this strong interest in patching vulner-
abilities also in the cases of Oracle and
IBM (DB2), but the severity medians of

Table 3. Severity of published vulnerabilities.

Application
Type Product

Severity (range=[0;10])

mean median
std.
dev.

Proportion of highly
severe vulnerabilities

([7;10])
Median

of medians

Browser
Internet Explorer 7* 6.65 6.80 2.07 45.95%

6.6
Firefox 2** 6.38 6.40 2.11 36.53%

Email client
MS Outlook Express 6* 6.18 5.10 1.76 39.13%

5.95
Thunderbird 1** 6.53 6.80 2.23 47.27%

Web server
IIS 5* 6.00 5.00 1.55 36.14%

5.00
Apache2** 5.36 5.00 1.50 18.75%

Office
MS Office 2003* 8.11 9.30 1.91 67.72%

8.45
OpenOffice2** 7.61 7.60 1.79 63.16%

Operating
system

Windows 2000* 6.58 7.20 2.10 57.92%

6.8

Windows XP* 6.67 7.20 2.16 58.92%

Mac OS X 10.x* 6.18 6.80 2.13 41.33%

Red Hat
Enterprise Linux 4**

4.72 4.90 2.20 23.11%

Debian 3.1** 4.75 4.90 2.21 23.19%

Database
Management
System

mySQL 5** 5.05 4.90 2.02 12.12%

6.15
PostgreSQL 8** 6.17 6.80 1.89 36.00%

Oracle 10g* 5.96 5.50 2.05 33.33%

DB2 v8* 6.22 7.2 2.75 53.85%

	 *	 closed source software	 median of medians = 6.8

	**	 open source softwareµ	 median of medians = 5.7

contributed articles

may 2011 | vol. 54 | no. 5 | communications of the acm 139

unpatched vulnerabilities are higher
than those of the patched ones. To
sum up, three out of four closed source
software vendors leave only a few vul-
nerabilities unpatched, while the other
vendor focuses on patching more se-
vere vulnerabilities.

Regarding the medians of patched
and unpatched vulnerabilities of open
source vendors, I do not find any pat-
tern. In addition, the patching behav-
ior of open source vendors shows that
the proportion of unpatched vulnera-
bilities varies between 12% and 26.25%,
and can differ considerably. On the oth-
er hand, none of the eight open source
software packages shows an outlier, in
contrast to closed source software.

As a result of the analysis of the
patching behavior of software vendors,
it turns out the behavior is not mainly
determined by the particular software
development style, but by the policy of
the particular vendor.

Threats to Validity
Although the presented empirical study
uses comprehensive data on vulnera-
bilities and patches of widely deployed
software packages, and manual work
was carried out in order to check and to
improve data quality, some threats to
the validity of results remain. First, the
analysis investigates only those vulner-
abilities that have been published as
CVE vulnerabilities, that is, it excludes

leads to higher levels of security. One
approach would be to investigate the
technical roots of vulnerabilities, for
example by adopting the “Common
Weakness Enumeration” scheme pro-
vided by MITRE. This approach might
help to explain differences between
various software types with regard to
the severity of vulnerabilities. Unfortu-
nately, the NVD provides CWE values
for only a few vulnerabilities, so that we
need a more comprehensive data set.
A second approach would be the com-
parison of MTBVD values by identifying
and considering software and market
factors. We could then apply regres-
sion models, and control for these fac-
tors. As the sound application of such
models also requires the availability of
the actual dates of vulnerability disclo-
sures, we would need more precise data
than is currently available. To sum up,
we still face several data problems that
impede the identification and explana-
tion of differences in software security.

In contrast to vulnerability data,
patch data is even more difficult to ob-
tain. In order to facilitate further analy-
sis and to avoid the tedious collection
of patch information, comprehensive
data pools would be useful. The analy-
sis of vendors’ patching behavior shows
a diffuse picture that misses clear pat-
terns. We find patching behaviors that
do not only differ between vendors but
also between different products of the

vulnerabilities that have not been dis-
closed at all or have not been included
in the MITRE CVE dictionary. Second,
neither the “Assigned date” provided by
MITRE nor the “Original release date”
included in the NVD necessarily mirror
the actual date of vulnerability disclo-
sure to the public. I am not aware of any
data sources that provide reliable and
complete information on actual disclo-
sure dates. Third, the CVE-to-vendor/
product mapping (CPE) in the NVD is
incomplete and not always clear with
regard to which vendor is responsible
for releasing a patch. The mapping was
manually inspected by myself. In some
cases, conflicts were resolved by adopt-
ing my point of view. Fourth, MTBVD
values are limited in their validity, as
missing market and software factors of
packages (for example, market share,
SLOC) would need to be considered.

Discussion
The analysis and comparison of open
source and closed source software
packages reveals that the type of soft-
ware development is not the primary
driver of software security in terms of
the development of vulnerability dis-
closure over time, the severity of pub-
lished vulnerabilities, and unpatched
vulnerabilities and their severity. Con-
sequently, we should explore other
factors rather than asking whether
open source or closed source software

Table 4. Patched and unpatched vulnerabilities.

Application Type Product

Vulnerabilities (un)patched Median of severities

#vuln. #vuln. unpatched Prop. of unpatched vuln. unpatched patched overall

Browser
Internet Explorer 7 74 49 66.22% 5.0 9.3 6.8

Firefox 2 167 34 20.36% 5.0 6.8 6.4

Email client
MS Outlook Express 6 23 15 65.22% 5.0 7.3 5.1

Thunderbird 1 110 6 5.45% 3.45 6.95 6.8

Web server
IIS 5 83 40 48.19% 5.0 7.2 5.0

Apache2 80 21 26.25% 4.7 5.0 5.0

Office
MS Office 2003 99 4 4.04% 5.05 9.3 9.3

OpenOffice2 19 4 21.05% 5.25 9.3 7.6

Operating system

Windows 2000 385 117 30.39% 5.1 7.2 7.2

Windows XP 297 91 30.64% 5.0 7.5 7.2

Mac OS X 10.x 300 20 6.67% 5.0 6.8 6.8

Red Hat Enterprise Linux 4 264 39 14.77% 4.9 4.9 4.9

Debian 3.1 207 30 14.49% 4.9 4.9 4.9

Database Management
System

mySQL 5 33 8 24.24% 4.6 4.9 4.9

PostgreSQL 8 25 3 12.00% 9.0 6.3 6.8

Oracle 10g 63 8 12.70% 7.35 5.5 5.5

140 communications of the acm | May 2011 | vol. 54 | no. 5

contributed articles

same vendor (Microsoft). However,
high figures of unpatched vulnerabili-
ties show that exogenous incentives for
software vendors to avoid vulnerabili-
ties and/or to provide patches still need
to be amplified, although a bias toward
patching most severe vulnerabilities
occurs. Economic countermeasures
may provide such incentives.3,4

Conclusion
This work has presented the first com-
prehensive empirical study on the
security of open source and closed
source security. It compared 17 well
known and widely deployed software
packages regarding published vulner-
abilities and software vendors’ patch-
ing behavior. The empirical results
have shown that open source and
closed source software do not signifi-
cantly differ in terms of the severity of
vulnerabilities, the type of develop-
ment of vulnerability disclosure over
time, and vendors’ patching behavior.
Although open source software devel-
opment seems to prevent “extremely
bad” patching behavior, overall there
is no empirical evidence that the par-
ticular type of software development is
the primary driver of security. Rather,
the policy of the particular vendor de-
termines the patching behavior. Con-
sequently, in order to make software
less vulnerable, it is most important
to provide strong economic incen-
tives for software producers to provide
patches (at least for published vulner-
abilities) or, even better, to avoid vul-
nerabilities from the outset.

Acknowledgement
The author would like to thank Chris-
topher Johnson, Program Manager of
the NIST National Vulnerability Data-
base, for valuable discussions and the
provision of background information,
and Eliot Rich for his valuable support
in writing this article. I appreciate the
critical remarks of three anonymous re-
viewers. All errors are the sole responsi-
bility of the author.	

References
1.	A lhazmi, O., Malaiya, Y., Ray, I. Measuring, analyzing

and predicting security vulnerabilities in software
systems. Computers & Security 26, 3 (2007) 219-228.

2.	A nderson, R. Open and closed systems are equivalent
(that is, in an ideal world). Perspectives on Free
and Open Source Software. J. Feller, B. Fitzgerald,
S.A. Hissam, and K.R. Lakhani (eds). MIT Press,
Cambridge, MA, 2005, 127–142.

3.	A nderson, R. Why information security is hard—An
economic perspective. In Proceedings of the 17th
Computer Security Applications Conference, (New
Orleans, LA, Dec. 10-14, 2001), 358-365.

4.	A nderson, R. and Moore, T. Information security
economics—and beyond. Information Security
Summit 2008; http://www.cl.cam.ac.uk/~rja14/
Papers/econ_czech.pdf.

5.	A rbaugh, W.A., Fithen, W.L. and McHugh, J. Windows
of vulnerability: A case study analysis. IEEE Computer
33, 12 (2000), 52–59.

6.	B eattie, S., Arnold, S., Cowan, C., Wagle, P., Wright, C.
and Shostack, A. Timing the application of security
patches for optimal uptime. In Proceedings of 16th
Systems Administration Conference, (Berkeley, CA,
2002), USENIX Association, 233–242.

7.	B öhme, R. Vulnerability markets. What is the
economic value of a zero-day exploit? In Proceedings
of 22nd Chaos Communication Congress, (Berlin,
Germany, Dec. 27-30, 2005).

8.	 Free Software Foundation (FSF). The free software
definition; http://www.fsf.org/licensing/essays/free-sw.
html, 2007.

9.	 Frei, S., May, M., Fiedler, U. and Plattner, B. Large-scale
vulnerability analysis. In Proceedings of the ACM
SIGCOMM 2006 Workshop, (Nov. 11, 2006, Pisa, Italy).

10.	 Gopalakrishna, R. and Spafford, E. H. A trend analysis
of vulnerabilities. Technical Report 2005-05, CERIAS,
Purdue University, May 2005.

11.	 Levy, E. Wide open source; http://www.securityfocus.
com/news/19, 2000.

12.	 MITRE. Common vulnerabilities and exposures; http://
cve.mitre.org, 2009.

13.	N euhaus, S., Zimmermann, T., Holler, C., Zeller, A.
Predicting vulnerable software components. In
Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS 2007), (Alexandria,
VA, Oct. 2007), 529–540.

14.	N IST. National Vulnerability Database; http://nvd.nist.
gov, 2009.

15.	O pen Source Initiative (OSI). The Open Source
Definition; http://www.opensource.org/docs/osd, 2006.

16.	O zment, A. Improving vulnerability discovery
models: Problems with definitions and assumptions.
In Proceedings of the 3rd Workshop on Quality of
Protection, (Alexandria, VA, Oc. 29, 2007).

17.	O zment, A. The likelihood of vulnerability rediscovery
and the social utility of vulnerability hunting. In
Proceedings of the 4th Workshop on the Economics of
Information Security, (Harvard University, June 2–3,
2005, Cambridge, MA), 1–21.

18.	O zment, A. and Schechter, S.E. Milk or wine: Does
software security improve with age? In Proceedings of
the 15th Conference on USENIX Security Symposium,
(Vancouver, B.C., July 31-Aug. 4, 2006).

19.	 Payne, C. On the security of open source software.
Information Systems Journal 12, 1 (2002), 61–78.

20.	R aymond, E.S. The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary. O’Reilly, Beijing, China, 2001.

21.	R escorla, E. Is finding security holes a good idea? In
Proceedings of the 3rd Annual Workshop on Economics
and Information Security, (University of Minnesota,
May 13-14, 2004).

22.	R adianti, J., Rich, E. and Gonzalez, J.J. Vulnerability
black markets: Empirical evidence and scenario
simulation. In Proceedings of the 42nd Hawaii
International Conference on System Sciences, (Big
Island, Hawaii, Jan. 5-8, 2009).

23.	 US-CERT. Vulnerability notes database field
descriptions (2009); http://www.kb.cert.org/vuls/
html/fieldhelp/

24.	 Woo, S.-W., Alhazmi, O.H. and Malaiya, Y. K. An
analysis of the vulnerability discovery process in Web
browsers. In Proceedings of the 10th International
Conference on Software Engineering and Applications,
(Dallas, TX, Nov. 13-15, 2006).

25.	 Woo, S.-W. , Alhazmi, O. H. and Malaiya, Y. K. Assessing
vulnerabilities in Apache and IIS HTTP servers.
In Proceedings of the 2nd International Symposium
on Dependable, Autonomic and Secure Computing,
(Indianapolis, IN, Sept. 29-Oct. 1, 2006), 103-110.

Guido Schryen (guido.schryen@wiwi.uni-regensburg.de)
is a professor of information systems at the University of
Regensburg, Germany.

© 2011 ACM 0001-0782/11/05 $10.00

It is still challenging
to retrieve
consistent and
comprehensive
vulnerability data
and patch data. In
order to facilitate
further analysis
and to avoid tedious
data collection,
comprehensive
data pools would be
useful.

